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Supplementary Material

S1 Further Dataset Information

The dataset used in this study includes recordings from 10 subjects, each performing six
types of physical activities: walking, running, incline walking, backward walking, cycling,
and stair climbing. These activities were divided into two main experimental sessions:
Session 1: Sitting, standing, level walking, incline walking, and backward walking on a
treadmill
Session 2: Sitting, standing, running on a treadmill, cycling on a stationary bike, and stair
climbing on a stairmill.
For each activity, subjects followed a protocol in which they stood quietly for 6 minutes,
performed each speed/resistance condition for 6 minutes in randomized order, and then sat
quietly for another 6 minutes. All sensor data were recorded with synchronized timestamps,
and each time step was manually annotated with the corresponding activity type.
Below, we mentioned the utilized signals:
(i) acceleration magnitudes from the left/right ankles and wrist, waist, and chest (For all ac-
celeration signals, the vector magnitude across the three axes was calculated).
(ii) right/left wrist electrodermal activity (EDA) and skin temperature
(iii) a composite lower-limb signal derived from normalized sEMG envelopes
(iv) respiratory and cardiovascular measures, including V̇O2 , V̇CO2 , SpO2, breath frequency,
minute ventilation, and heart rate. Respiratory measures were collected breath-by-breath
with a portable respirometer, while heart rate and SpO2 were measured with a chest strap
and earlobe oximeter. All signals were synchronized with the respirometer and stored on a
breath-by-breath basis. Because these signals were measured breath-by-breath, their sam-
pling frequency varied. We maintained a constant sample rate by averaging over the fre-
quency of breath for each activity and its specific condition (e.g., backward walking at 1m/s
vs. 0.7m/s) [20].
The ground truth energy expenditure: It was computed using the Brockway equation [1],
which relies on measurements of V̇O2a and V̇CO2 . The resulting values were normalized to
body weight for comparability across subjects. Steady-state EE was estimated by averaging
the final three minutes of each six-minute activity condition. To obtain the net energetic
cost, the standing baseline value recorded at the start of each trial was subtracted from the
steady-state estimate. (Further details on data collection and processing can be found in [8].)
Input formatting and fusion: In all experiments, input signals were segmented into fixed-
length windows of 10 or 20 time steps. The final choice of time step size was selected
based on preliminary performance tuning. For multi-signal inputs, we applied early fusion
by concatenating the signals along the feature dimension.

S2 Detailed Model Architecture and Training Procedure

In this study, we tested six models: Linear Regression, CNN, LSTM, ResNet, ResNet+Attention,
and Transformer. For each model, we provide details on the network architecture, training
configuration, and implementation choices, including layer design and optimization settings.

Citation
Citation
{Robergs, Dwyer, and Astorino} 2010

Citation
Citation
{Brockway} 1987

Citation
Citation
{Ingraham, Ferris, and Remy} 2019



15 BABAKHANI ET AL.: SUPPLEMENTARY MATERIAL

S2.1 Linear Regression:
We implemented both single and multiple linear regression models for the energy expendi-
ture (EE) estimation. The general form of the model is:

ŷ = b0 +
n

∑
i=1

bixi = Xb (1)

where ŷ represents the vector of predicted EE values, the variable n denotes the number
of input signals included in the model. The input matrix X consists of a column of ones to
account for the bias term and n columns representing the input signals. The vector b contains
the learned regression coefficients.

S2.2 CNN:
The CNN model consists of three 1D convolutional blocks followed by fully connected lay-
ers. Each convolutional block includes a 1D convolution layer (kernel size = 3), batch nor-
malization, ReLU activation, max pooling (kernel size = 2), with dropout applied in the
second and third blocks. The number of filters decreases across the layers (64, 32, and 16).
The convolutional output is flattened and passed through two fully connected layers: The
first is a dense layer with 40 units, ReLU activation, and dropout. The second is an output
layer with linear activation to match the target dimension. We used 20 time steps, a batch
size of 8, and the Adam optimizer (learning rate = 0.0005) for training this network.

S2.3 LSTM:
We implemented a stacked LSTM-based regression network. The model consists of two
sequential Long Short-Term Memory (LSTM) layers. The first LSTM layer has 128 hidden
units, followed by dropout regularization. Its output is passed to a second LSTM layer with
64 hidden units and an additional dropout. The final LSTM output is flattened and passed
through a fully connected layer with 64 units, followed by batch normalization and dropout.
We set the number of time steps to 20, used a batch size of 32, and used the Adam optimizer
with a learning rate of 0.0005.

S2.4 ResNet:
The original ResNet architecture is adapted for 1D time-series input. The model architecture
begins with a 1D convolution using 64 filters (kernel size = 7), followed by batch normaliza-
tion, ReLU activation, and max pooling. Next, there are three residual blocks with increasing
output dimensions (64 to 128 channels, 128 to 256 channels, and 256 to 512 channels). Each
block contains two Conv1D layers (kernel size = 3) with batch normalization layers and skip
connections (including a convolution to match the input and output dimensions). After the
final residual block, global average pooling is applied over the time dimension, followed by a
linear layer mapping the pooled features to the desired output size. The network was trained
with 10 time steps, a batch size of 32, and the Adam optimizer with a learning rate of 0.001.

S2.5 ResNet+Attention:
In this architecture, there is an attention block added to the residual blocks in our ResNet
architecture. This block computes a self-attention mechanism over the temporal dimension.
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Within this block, three distinct 1×1 convolutions are applied to derive the query, key, and
value representations of the input.

The attention score computed using the attention function equation from [24], based on a
scaled dot-product attention mechanism over the temporal dimension. After re-weighting the
value features, a residual connection integrates the attention output with the original input,
ensuring that the initial features are preserved. The network was trained with 10 time steps,
a batch size of 8, and the Adam optimizer (learning rate = 0.0005).

S2.6 Transformer:
This model is based on the Transformer encoder framework [24], adapted for sequential sig-
nal modeling. The raw input signal is first projected into a higher-dimensional representation
using a 1D convolution with kernel size 3, which captures local temporal patterns. Since the
Transformer architecture does not contain recurrence or convolutional structure, temporal
order is incorporated through sinusoidal positional encodings as introduced in [24]. The
projected sequence is then processed by a stack of two Transformer encoder layers, each
consisting of 8-head self-attention, a feedforward network with hidden dimension 256, resid-
ual connections, and layer normalization. Finally, the encoded sequence is passed through a
lightweight feedforward output head composed of two fully connected layers with a ReLU
activation in between to produce predictions at each time step. For training, we used a time
step length of 10, a batch size of 4, and the Adam optimizer with a learning rate of 0.0009.

S3 Additional Per-activity Evaluation Tables
In "Per-Activity Evaluation" (Section 3.4) of the paper, we discussed how model perfor-
mance varied across activities. To complement that analysis, we provide a detailed summary
of pairwise signal combinations here. Table S1 presents the worst-performing pairs (left)
and the best partner for each signal when minute ventilation was excluded (right). These
results highlight which modalities provide complementary information and which pairs lead
to consistently poor predictions.

Signal 1 Signal 2 Model RMSE (W/kg))
L_Wrist_Temp R_Wrist_Temp ResNet 3.10
Waist_ACCL L_Wrist_ACCL ResAtt 3.12
R_Wrist_Elec R_Wrist_Temp ResNet 3.15
L_Wrist_Elec L_Wrist_Temp Lin-Reg 3.19
L_Wrist_Temp R_Wrist_Temp Trans 3.21
L_Wrist_Elec R_Wrist_Temp Lin-Reg 3.23
L_Wrist_Temp R_Wrist_Temp LSTM 3.25
EMG_M_L SpO2 CNN 3.35
Waist_ACCL Chest_ACCL ResAtt 3.36
EMG_M_R SpO2 CNN 3.44
Waist_ACCL R_Wrist_ACCL ResAtt 3.81
EMG_M_R SpO2 LSTM 4.36
EMG_M_L R_Wrist_Elec CNN 4.51
EMG_M_R R_Wrist_Elec CNN 5.28
EMG_M_R L_Wrist_Elec CNN 7.90
EMG_M_L L_Wrist_Elec CNN 8.05

Signal Best Pair Model RMSE (W/kg))
Waist_ACCL EMG_M_L Trans 1.64
Chest_ACCL HR CNN 1.67
L_Ankle_ACCL HR CNN 1.51
R_Ankle_ACCL HR CNN 1.49
L_Wrist_ACCL HR CNN 1.79
L_Wrist_Elec HR CNN 1.63
L_Wrist_Temp R_Ankle_ACCL CNN 1.93
R_Wrist_Elec HR CNN 1.64
R_Wrist_Temp R_Ankle_ACCL CNN 1.87
R_Wrist_ACCL HR CNN 1.81
EMG_M_L Waist_ACCL Trans 1.64
EMG_M_R L_Ankle_ACCL ResAtt 1.53
HR R_Ankle_ACCL CNN 1.49
SpO2 HR CNN 1.86
Breath_Freq R_Ankle_ACCL CNN 1.91
Min_Vent EMG_M_L ResAtt 0.90

Table S1: Left: Worst signal pair combinations. Right: Best pair for each signal (in absence
of Minute Ventilation).
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S4 Additional Per-Subject Evaluation Plots
In "Per-Subject Evaluation" (Section 3.5) of the paper, we focused on the Transformer and
CNN models and their corresponding plots. In Figure S1, we provide the per-subject perfor-
mance plots for the four remaining models. The trends largely mirror those observed for the
Transformer and CNN models, confirming the key observations in the main paper.

Figure S1: Performance of the remaining four models for single and grouped signals across
10 subjects (complementing Section 3.5 of the main paper). The dashed line separates single-
from grouped-signals in each plot. Boxplots represent the distribution of RMSE values
across subjects: median (line), 25th–75th percentiles (box), and whiskers to 1.5×IQR. (MV:
Minute Ventilation)


