Superpixel Anything: A general object-based framework for accurate yet regular superpixel segmentation


Julien Walther (University of Bordeaux), Rémi Giraud (University of Bordeaux), Michaël Clément (University of Bordeaux)
The 35th British Machine Vision Conference

Abstract

Superpixels are widely used in computer vision to simplify image representation and reduce computational complexity. While traditional methods rely on low-level features, deep learning-based approaches leverage high-level features but also tend to sacrifice regularity of superpixels to capture complex objects, leading to accurate but less interpretable segmentations. In this work, we introduce SPAM (SuperPixel Anything Model), a versatile framework for segmenting images into accurate yet regular superpixels. We train a model to extract image features for superpixel generation, and at inference, we leverage a large-scale pre-trained model for semantic-agnostic segmentation to ensure that superpixels align with object masks. SPAM can handle any prior high-level segmentation, resolving uncertainty regions, and is able to interactively focus on specific objects. Comprehensive experiments demonstrate that SPAM qualitatively and quantitatively outperforms state-of-the-art methods on segmentation tasks, making it a valuable and robust tool for various applications.Code and pre-trained models are available here: https://github.com/waldo-j/spam.

Citation

@inproceedings{Walther_2025_BMVC,
author    = {Julien Walther and Rémi Giraud and Michaël Clément},
title     = {Superpixel Anything: A general object-based framework for accurate yet regular superpixel segmentation},
booktitle = {36th British Machine Vision Conference 2025, {BMVC} 2025, Sheffield, UK, November 24-27, 2025},
publisher = {BMVA},
year      = {2025},
url       = {https://bmva-archive.org.uk/bmvc/2025/assets/papers/Paper_1035/paper.pdf}
}


Copyright © 2025 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection