Hierarchical Image-Guided 3D Point Cloud Segmentation in Industrial Scenes via Multi-View Bayesian Fusion


Yu Zhu (Tohoku University), Naoya Chiba (Osaka University), Koichi Hashimoto (Tohoku University)
The 35th British Machine Vision Conference

Abstract

Reliable 3D segmentation is critical for understanding complex scenes with dense layouts and multi-scale objects, as commonly seen in industrial environments. In such scenarios, heavy occlusion weakens geometric boundaries between objects, and large differences in object scale will cause end-to-end models fail to capture both coarse and fine details accurately. Existing 3D point-based methods require costly annotations, while image-guided methods often suffer from semantic inconsistencies across views. To address these challenges, we propose a hierarchical image-guided 3D segmentation framework that progressively refines segmentation from instance-level to part-level. Instance segmentation involves rendering a top-view image and projecting SAM-generated masks prompted by YOLO-World back onto the 3D point cloud. Part-level segmentation is subsequently performed by rendering multi-view images of each instance obtained from the previous stage and applying the same 2D segmentation and back-projection process at each view, followed by Bayesian updating fusion to ensure semantic consistency across views. Experiments on real-world factory data demonstrate that our method effectively handles occlusion and structural complexity, achieving consistently high per-class mIoU scores. Additional evaluations on public dataset confirm the generalization ability of our framework, highlighting its robustness, annotation efficiency, and adaptability to diverse 3D environments.

Citation

@inproceedings{Zhu_2025_BMVC,
author    = {Yu Zhu and Naoya Chiba and Koichi Hashimoto},
title     = {Hierarchical Image-Guided 3D Point Cloud Segmentation in Industrial Scenes via Multi-View Bayesian Fusion},
booktitle = {36th British Machine Vision Conference 2025, {BMVC} 2025, Sheffield, UK, November 24-27, 2025},
publisher = {BMVA},
year      = {2025},
url       = {https://bmva-archive.org.uk/bmvc/2025/assets/papers/Paper_1156/paper.pdf}
}


Copyright © 2025 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection