SVAC: Scaling Is All You Need For Referring Video Object Segmentation


Li Zhang (Columbia University), Haoxiang Gao (Carnegie Mellon University), Zhihao Zhang (Columbia University), Luoxiao Huang (New York University), Tao Zhang (Wuhan University)
The 35th British Machine Vision Conference

Abstract

Referring Video Object Segmentation (RVOS) aims to segment target objects in video sequences based on natural language descriptions. While recent advances in Multi-modal Large Language Models (MLLMs) have improved RVOS performance through enhanced text-video understanding, several challenges remain, including insufficient exploitation of MLLMs’ prior knowledge, prohibitive computational and memory costs for long-duration videos, and inadequate handling of complex temporal dynamics. In this work, we propose SVAC, a unified model that improves RVOS by scaling up input frames and segmentation tokens to enhance video-language interaction and segmentation precision. To address the resulting computational challenges, SVAC incorporates the Anchor-Based Spatio-Temporal Compression (ASTC) module to compress visual tokens while preserving essential spatio-temporal structure. Moreover, the Clip-Specific Allocation (CSA) strategy is introduced to better handle dynamic object behaviors across video clips. Experimental results demonstrate that SVAC achieves state-of-the-art performance on multiple RVOS benchmarks with competitive efficiency.

Citation

@inproceedings{Zhang_2025_BMVC,
author    = {Li Zhang and Haoxiang Gao and Zhihao Zhang and Luoxiao Huang and Tao Zhang},
title     = {SVAC: Scaling Is All You Need For Referring Video Object Segmentation},
booktitle = {36th British Machine Vision Conference 2025, {BMVC} 2025, Sheffield, UK, November 24-27, 2025},
publisher = {BMVA},
year      = {2025},
url       = {https://bmva-archive.org.uk/bmvc/2025/assets/papers/Paper_292/paper.pdf}
}


Copyright © 2025 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection