SteerPose: Simultaneous Extrinsic Camera Calibration and Matching from Articulation


Sang-Eun Lee (Kyoto University), Ko Nishino (Kyoto University), Shohei Nobuhara (Kyoto Institute of Technology)
The 35th British Machine Vision Conference

Abstract

Can freely moving humans or animals themselves serve as calibration targets for multi-camera systems while simultaneously estimating their correspondences across views? We humans can solve this problem by mentally rotating the observed 2D poses and aligning them with those in the target views. Inspired by this cognitive ability, we propose SteerPose, a neural network that performs this rotation of 2D poses into another view. By integrating differentiable matching, SteerPose simultaneously performs extrinsic camera calibration and correspondence search within a single unified framework. We also introduce a novel geometric consistency loss that explicitly ensures that the estimated rotation and correspondences result in a valid translation estimation. Experimental results on diverse in-the-wild datasets of humans and animals validate the effectiveness and robustness of the proposed method. Furthermore, we demonstrate that our method can reconstruct the 3D poses of novel animals in multi-camera setups by leveraging off-the-shelf 2D pose estimators and our class-agnostic model. Our code is available at https://github.com/kcvl-public/steerpose.

Citation

@inproceedings{Lee_2025_BMVC,
author    = {Sang-Eun Lee and Ko Nishino and Shohei Nobuhara},
title     = {SteerPose: Simultaneous Extrinsic Camera Calibration and Matching from Articulation},
booktitle = {36th British Machine Vision Conference 2025, {BMVC} 2025, Sheffield, UK, November 24-27, 2025},
publisher = {BMVA},
year      = {2025},
url       = {https://bmva-archive.org.uk/bmvc/2025/assets/papers/Paper_359/paper.pdf}
}


Copyright © 2025 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection