Interactive Occlusion Boundary Estimation through Exploitation of Synthetic Data


Lintao XU (Université Gustave Eiffel), Chaohui Wang (Université Gustave Eiffel)
The 35th British Machine Vision Conference

Abstract

Occlusion boundaries (OBs) geometrically localize occlusion events in 2D images and provide critical cues for scene understanding. In this paper, we present the first systematic study of Interactive Occlusion Boundary Estimation (IOBE), introducing MS$^3$PE— a novel multi-scribble-guided deep-learning framework that advances IOBE through two key innovations: (1) an intuitive multi-scribble interaction mechanism, and (2) a 3-encoding-path network enhanced with multi-scale strip convolutions. Our MS$^3$PE surpasses adapted baselines from seven state-of-the-art interactive segmentation methods, and demonstrates strong potential for OB benchmark construction through our real-user experiment. Besides, to address the scarcity of well-annotated real-world data, we propose using synthetic data for training IOBE models, and developed Mesh2OB, the first automated tool for generating precise ground-truth OBs from 3D scenes with self-occlusions explicitly handled, enabling creation of the OB-FUTURE synthetic benchmark that facilitates generalizable training without domain adaptation. Finally, we introduce OB-LIGM— a high-quality real-world benchmark comprising 120 meticulously annotated high-resolution images advancing evaluation standards in OB research. Source code and resources are available at https://github.com/xul-ops/IOBE.

Citation

@inproceedings{XU_2025_BMVC,
author    = {Lintao XU and Chaohui Wang},
title     = {Interactive Occlusion Boundary Estimation through Exploitation of Synthetic Data},
booktitle = {36th British Machine Vision Conference 2025, {BMVC} 2025, Sheffield, UK, November 24-27, 2025},
publisher = {BMVA},
year      = {2025},
url       = {https://bmva-archive.org.uk/bmvc/2025/assets/papers/Paper_427/paper.pdf}
}


Copyright © 2025 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection