Pandora: Articulated 3D Scene Graphs from Egocentric Vision


Alan Yu (Massachusetts Institute of Technology), Yun Chang (Massachusetts Institute of Technology), Christopher Xie ( Meta Reality Labs), Luca Carlone (Massachusetts Institute of Technology)
The 35th British Machine Vision Conference

Abstract

Robotic mapping systems typically approach building metric-semantic scene representations from the robot's own sensors and cameras. However, these "first person" maps inherit the robot's own limitations due to its embodiment or skillset, which may leave many aspects of the environment unexplored. For example, the robot might not be able to open drawers or access wall cabinets. In this sense, the map representation is not as complete, and requires a more capable robot to fill in the gaps. We narrow these blind spots in current methods by leveraging egocentric data captured as a human naturally explores a scene wearing Project Aria glasses, giving a way to directly transfer knowledge about articulation from the human to any deployable robot. We demonstrate that, by using simple heuristics, we can leverage egocentric data to recover models of articulate object parts, with quality comparable to those of state-of-the-art methods based on other input modalities. We also show how to integrate these models into 3D scene graph representations, leading to a better understanding of object dynamics and object-container relationships. We finally demonstrate that these articulated 3D scene graphs enhance a robot's ability to perform mobile manipulation tasks, showcasing an application where a Boston Dynamics Spot is tasked with retrieving concealed target items, given only the 3D scene graph as input.

Citation

@inproceedings{Yu_2025_BMVC,
author    = {Alan Yu and Yun Chang and Christopher Xie and Luca Carlone},
title     = {Pandora: Articulated 3D Scene Graphs from Egocentric Vision},
booktitle = {36th British Machine Vision Conference 2025, {BMVC} 2025, Sheffield, UK, November 24-27, 2025},
publisher = {BMVA},
year      = {2025},
url       = {https://bmva-archive.org.uk/bmvc/2025/assets/papers/Paper_548/paper.pdf}
}


Copyright © 2025 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection