DTFSal: Audio-Visual Dynamic Token Fusion for Video Saliency Prediction


Kiana Hooshanfar (University of Tehran), Alireza Hosseini (University of Tehran), Mona Ahmadian (University of Surrey), Ahmad Kalhor (University of Tehran), Babak N Araabi (University of Tehran)
The 35th British Machine Vision Conference

Abstract

Audio-visual saliency prediction aims to mimic human visual attention by identifying salient regions in videos through the integration of both visual and auditory information. Although visual-only approaches have significantly advanced, effectively incorporating auditory cues remains challenging due to complex spatio-temporal interactions and high computational demands. To address these challenges, we propose Dynamic Token Fusion Saliency (DFTSal), a novel audio-visual saliency prediction framework designed to balance accuracy with computational efficiency. Our approach features a multi-scale visual encoder equipped with two novel modules: the Learnable Token Enhancement Block (LTEB), which adaptively weights tokens to emphasize crucial saliency cues, and the Dynamic Learnable Token Fusion Block (DLTFB), which employs a shifting operation to reorganize and merge features, effectively capturing long-range dependencies and detailed spatial information. In parallel, an audio branch processes raw audio signals to extract meaningful auditory features. Both visual and audio features are integrated using our Adaptive Multimodal Fusion Block (AMFB), which employs local, global, and adaptive fusion streams for precise cross-modal fusion. The resulting fused features are processed by a hierarchical multi-decoder structure, producing accurate saliency maps. Extensive evaluations on six audio-visual benchmarks demonstrate that DFTSal achieves SOTA performance while maintaining computational efficiency.

Citation

@inproceedings{Hooshanfar_2025_BMVC,
author    = {Kiana Hooshanfar and Alireza Hosseini and Mona Ahmadian and Ahmad Kalhor and Babak N Araabi},
title     = {DTFSal: Audio-Visual Dynamic Token Fusion for Video Saliency Prediction},
booktitle = {36th British Machine Vision Conference 2025, {BMVC} 2025, Sheffield, UK, November 24-27, 2025},
publisher = {BMVA},
year      = {2025},
url       = {https://bmva-archive.org.uk/bmvc/2025/assets/papers/Paper_770/paper.pdf}
}


Copyright © 2025 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection