HEAL: Learning-Free Source Free Unsupervised Domain Adaptation for Cross-Modality Medical Image Segmentation


Yulong Shi (Northeastern University), Jiapeng Li (Northeastern University), Lin Qi (Northeastern University)
The 35th British Machine Vision Conference

Abstract

Growing demands for clinical data privacy and storage constraints have spurred advances in Source Free Unsupervised Domain Adaptation (SFUDA). SFUDA addresses the domain shift by adapting models from the source domain to the unseen target domain without accessing source data, even when target-domain labels are unavailable. However, SFUDA faces significant challenges: the absence of source domain data and label supervision in the target domain due to source free and unsupervised settings. To address these issues, we propose HEAL, a novel SFUDA framework that integrates Hierarchical denoising, Edge-guided selection, size-Aware fusion, and Learning-free characteristic. Large-scale cross-modality experiments demonstrate that our method outperforms existing SFUDA approaches, achieving state-of-the-art (SOTA) performance. The source code is publicly available at: https://github.com/derekshiii/HEAL.

Citation

@inproceedings{Shi_2025_BMVC,
author    = {Yulong Shi and Jiapeng Li and Lin Qi},
title     = {HEAL: Learning-Free Source Free Unsupervised Domain Adaptation for Cross-Modality Medical Image Segmentation},
booktitle = {36th British Machine Vision Conference 2025, {BMVC} 2025, Sheffield, UK, November 24-27, 2025},
publisher = {BMVA},
year      = {2025},
url       = {https://bmva-archive.org.uk/bmvc/2025/assets/papers/Paper_943/paper.pdf}
}


Copyright © 2025 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection